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DIRECTIONAL WAVENUMBER SPECTRA OF OCEAN SURFACE
WAVES
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Abstract

It has been accepted as a truth that under a steady wind forcing condition, the wind
generated waves travel in the direction of the wind vector. Based on field
measurements, the directional beamwidth is narrowest near the spectral peak, and
increases toward both higher and lower frequency components. Over the last several
decades, such scenario is the basis for the design of the directional distribution
function of any spectral model for engineering and scientific applications. We
present results from a spectral analysis of 3D topography of random surface waves
generated by a quasi-stcady wind field. The directional spectra display clear bimodal
pattern in the wavenumber region just above the spectral peak. The generation
mechanism of the bimodal directional distribution in the short wave region is
identificd to be nonlincar wave-wave interaction. Quantitative comparisons of
measurcd and simulated  directional distribution functions are in very good
agreement.
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Introduction

Presently, it is believed that weakly nonlinear processes largely control wind wave
evolution. The nonlinear theory has been remarkably successful in predicting many
aspects of wind wave behavior. Numerical computations show that application of the
nonlinear theory results in a bimodal directional spreading (Banner and Young
1994). Measurements from directional wave buoys or wave gauge arrays, however,
largely indicate that the wave field is unimodal. As a result, unimodal directional
distribution has been assumed in all wave models for scientific and engineering
applications. The directional resolution of the conventional wave measurements,
however, is also known to be poor and significant variations are found in the analysis
results using different processing methods. The contradiction between predicted
bimodal and measured unimodal directional distributions has not been resolved ever
since the nonlinear wave-wave interaction theory was introduced in the early sixties,
and the directional characteristics of random ocean waves have remained an
unsettled issue over the past four decades. In this paper, we present results from
analyzing the 3D ocean surface topography obtained by an airbomne scanning lidar
system. The analysis provides strong evidence of a bimodal feature in the directional
distribution function. The measured bimodal properties are in very good agreement
with prediction from nonlinear wave-wave interaction theory.

Directional Wavenumber Spectra

Airborne topographic mapper (ATM, an airborne scanning lidar system) acquires
high-resolution spatial measurements of the 3D topography of ocean surface waves
(Hwang et al. 2000a,b). From these spatial data, 2D wavenumber spectra can be
directly calculated (Fig. 1). These 2D wavenumber spectra have excellent directional
resolution, better than ~100/(k/k,,) in the dataset analyzed here, where k is
wavenumber and subscript p indicates the quantity at the spectral peak. The analysis
of the resulting directional distribution shows that the spreading factor is narrowest
near the spectral peak wavenumber (k,=1.3 £,), and broadens toward both higher and
lower wavenumbers from k. These results on the directional beamwidth are
consistent with those derived from measurements using directional buoys and wave
gauge arrays (Fig. 2), although the value of &, differs from earlier reports: k,=0.9 &, in
Donelan et al. (1985), 1.0 &, in Mitsuyasu et al. (1975), and 1.1 &, in Hasselmann et
al. (1980). :

The development of bimodal distribution is clearly shown in the 2D
wavenumber spectrum obtained from the 3D surface topography. The wavenumber
dependence of the lobe angle and lobe ratio is established from the present dataset.
Fourier decomposition of the directional distributions is performed. Coefficients of
the third order polynomial fitting of the leading 9 Fourier coefficients are listed in
Table 1. Compared with measured data, it is found that major features of the
directional distributions such as the beam width (spreading factor), lobe angle, and
lobe ratio can be sufficiently represented by 4 Fourier components of the distribution
function.
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Figure 1. An example of the 2D wavenumber spectrum calculated from 3D ocean

surface topography. The result is plotted in (a) [k, k], (b) [k, 6}, and (c) [w, o]
coordinates.
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Figure 2. Directional beamwidth calculated from the first moment of the directional
distribution function. Measurements from ATM and analytical solutions from three

spectral models (Donelan et al. 1985; Mitsuyasu et al. 1975; Hasselmann et al. 1980)
are presented.
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Table 1. Polynomial fitting (y=c|x3+czxZC3x+C4, where y is 4y, A, ... Ay, and x is
&k} of the Fourier coefficients of directional distributions.

C| Cy C3 Cq4
4y -6.83x10™ 2.20x1072 2.42x107 9.87x107
A -2.66x107 5.32x1072 -3.82x107  7.83x10"
Az -1.44x107 3.29x107 -2.08x10°"  3.26x10"
As -1.13x107 2.15x107 -LOIx107"  1.17x10"
As  -7.22x10™ 1.09x10? -4.70x10%  5.96x102
As  -9.04x10™ 1.21x10% -4.92x10%  7.40x102
A7 5.92x10™ -8.34x107 2.75x107 -9.78x1073
Ay -1.10x107 1.57x102 -7.13x107 9.80x102
49 4.33x107 -5.93x107 2.06x1072 -1.52x10%?

_ Numerical experiments (e.g., Komen et al. 1984; Banner and Young1994)
demonstrate that the directional distribution function is sensitive to different
formulations of the sources terms. Accurate determination of the directional
distribution is needed to enhance our understanding of the ocean wave dynamics, and
to validate the performance of nonlinear ocean wave models. Fig. 3 shows a
comparison of the measured and computed directional distributions by Banner and
Young (1994).

Figure 3 Directional distributions of spectral components based on the numerical
results given by Banner and Young (1994) [left two pancls]. For comparison, the
directional distributions derived from spectral analysis of 3D topography acquired by
an airborne scanning lidar system are shown on the right two panels. The wind
dircction of ficld data is at ~45°.

The directional bimodality is clearly illustrated in hoth datasets. The bimodal
feature of the directional distribution function can be quantified by the lobe angle,
defined as the separation angle of the side lobe from the wind direction, and the lobe
ratio, defined as the amplitude of the side lobe of the directiona!l distribution to the
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reference value of the directional distribution function at the wind direction. Fig. 4
plots the measured and simulated lobe angles and lobe ratios. The simulated results
are in agreement with the measurements, especially in terms of the lobe angle. For
the lobe ratio, the two datasets are in good agreement for k/k,< ~4, at higher
wavenumber, the measured data continue to increase, while the computed results

appear to reach a saturation level.

o o . ATM w
F : ..... Banner & Young 1994
: TN e .
okl SR POSTRA
3 1 N N B
K] f
& [:
60 i
A
9 1 1 1 1
° H 4 6 B (14
ki
4
25
T T - T T T ~
H ' *
b1 S . .o -
3 : :
Sl l N e
. . PR B it
[ S SUSEPOT D . . .
) 1 { i
2 4 o 3 10

Figure 4. A comparison of (a) lobe angles, and (b) lobe ratios measured by the ATM
and numerical calculation (Banner and Young 1994) shown in Fig. 3.

Discussions

In this paper, we present results of the directional distribution of wind-generated
waves. The data source is the spatial measurement of ocean surface topography
obtained by an airborne scanning lidar system. Directional spectral analysis of the
3D surface wave topography provides convincing evidence of bimodal features in
the wavenumber region just above the spectral peak. For the wave components
shorter than the dominant wavelength, the lobe angle and lobe ratio of the directional
distribution increase monotonically as wavenumber increases. The bimodal
directional distribution is clearly different from the conventional unimodal
directional distribution functions presently adapted in ocean wave models.

Earlier analyses of temporal measurements by wave gauge arrays or directional
buoys show unimodal distributions (e.g., Mitsuyasu et al. 1975; Hasselmann et al.
1980: Donelan ct al. 1985). Bimodal features have been extracted from temporal
measurements more recently using maximum likelihood method (MLM) or
maximum entropy method (MEM) (Young et al. 1995; Ewans 1998). These results
highlight the major difficulty in resolving directional distributian properties from a
small number of sensor elements. Depending on the chosen method in the analysis
procedure, significant quantitative differences occur. For example, Young (1994)
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compares the directional resolutions of the Fourier expansion method (FEM) and the
MLM. Considerable broadening of the bimodal feature using either method is;;
illustrated (e.g., Young 1994, Fig. 4). Ewans (1998, Fig. 8) shows a comparison of
the bimodal analysis using MLM and MEM. The directional resolution of MEM is'
much "sharper,” and the method is known to produce false bimodal distribution in"%
tests using synthetic data (Ewans 1998; Lyger and Krogstad 1986). Despite these: §
shortcomings, significant progress has been made from Ewans' (1998) MEM :
analysis. For example, results of the lobe separation angle as a function of
dimensionless wave frequency over a wide range of wave age conditions are ;
established from one-year's data collected in an offshore station with well-defined -
fetch conditions and steady wind fields. He also shows that the simulation results on 2
the lobe angle based on nonlinear wave model simulations are in excellent apreement
with field data (Fig. 13 of Ewans 1998). Wang and Hwang extend the analysis of -
directional buoy measurements to the condition of transient development stage of |
wind-wave generation. They found that the bimodal characteristics (lobe angle and
lobe ratio) under transient development stage are very similar to those under steady :
wind conditions; and the robust bimodal directional distribution exists throughout the
evolution of wind-wave generation.

WL

EPR

Bimodal directional distribution has been observed from spatial
measurements using aerial stereo photographic technique (Phillips 1958; Cote et al.
1960, Holthuijsen 1983), airborne radar system (Jackson et al. 1985), land-based
imaging radar (Wyatt 1995), and airborne scanning lidar system (Hwang et al.
2000a,b). In contrast to the analysis of temporal measurements from wave gauge
arrays or directional buoys, standard 2D Fast Fourier Transformation (FFT)
procedure is sufficient to bring out the multi-modal feature in the directional
distribution from 3D spatial topographic images. Data quality of earlier
stereophotography, however, was not very high. Holthuijsen (1983) estimates the
dynamic range in their spectral results to be approximately 10 dB. Their data are also
significantly affected by the presence of nontrivial swell. The dynamic range of the
spectra presented in Cote et al. (1960) is much higher. Based on the contour plots
such as those shown in their Fig. 10.12, it is judged that the dynamic range of that
dataset is close to 20 dB. Technology has advanced significantly since those earlier
wave mapping missions. Specifically, the aircraft motion can be determined more
accurately due to the advent of the kinematic GPS (Global Positioning System)
technology. As a result, the signal to noise ratio of the measurement also improved
considerably. The dynamic range of the of the airborne scanning lidar system
measurements presented in Hwang et al. (2000a-b) is approximately 30 dB, i.c., 10
to 100 times improved over the earlier topographic datasets.

The bimodal feature described above mainly addresses the short wave
components with wavenumbers higher that the peak wavenumber. The bimodal
feature is produced by nonlinear wave-wave interaction. In the carly stage of wind
wave generation, a different kind of bimodal directional distribution exists. For this
situation, the phase speed of the dominant waves is much slower that the wind speed.
In the absence of strong background swell, airborne measurements show that two
dominant wave systems travel at oblique angles (Fig. 5.
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Figure 5. A second kind of bimodal directional distribution produced by resonant
propagation of the dominant wave systems. At the young stage of wave generation,
resonant condition results in two systems of waves propagating at oblique angles
with respect to the wind vector (from right to left), creating the crosshatched surface
wave pattern shown in (a). (b) and (c) are the corresponding directional wavenumber
spectrum presented in (k,.k,) and (k,0), coordinates, respectively. The wind direction
is at 0° in the coordinates shown.

Theoretical analysis of wave dynamics suggests that at the young wave stage,
resonant propagation between winds and waves results in bimodal or polymodal
directional distributions. (Phillips 1957). Because the phase velocities of young
waves arc slower than the wind speed, in order to maintain in resonance condition
waves propagate at oblique angles satisfying C,=U,cosé, where C, is the phase
velocity of the wave component, U, is the wind speed at a reference height
proportional to the wavelength, and @ is the direction of wave propagation with
respect to the wind direction. More detailed discussions are presented in Hwang et al.
(2000c¢).

Clarification  of  various physical mechanisms is a key step to the
improvement of numerical models that provide forecast, nowcast and hindcast. The
confirmation of directional bimodality of ocean waves is significant in clarifying the
role of nonlincar wave-wave interaction mechanism governing the evolution of
ocean waves and in enhancing our wave modeling capabilities. Accurate prescription
of the directional properties is also crucial to realistic representation of the ocean
surface, which is required input for many electro-optical and electromagnetic remote
sensing applications. In other applications such as coastal and harbor engineering,
beach protection, and oftshore engineering projects, wave amplitude and wave
direction are key parameters defining the wave force on the béach and coastal or
offshorc  structures. These ocean engineering projects are costly.  Accurate
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formulation of the wave directional properties is also important to design °
optimization. K

Summary

In this paper, we present results of the directional distribution of wind-generated .3
waves. The data source is spatial measurements of ocean surface topography ;7]
obtained by an airborne scanning lidar system. Directional spectral analysis of the .
3D surface wave topography provides convincing evidence of bimodal features in -
the wavenumber region just above the spectral peak. The lobe angle and lobe ratio of
the directional distribution increase monotonically as wavenumber increases. The
bimodal directional distribution is clearly different from the conventional unimodal
directional distribution functions presently adapted in ocean wave models. The _
generation bimodal directional distribution in the short wave region is generated by *
nonlinear wave-wave interaction. Quantitative comparisons of measured and
numerically ~ calculated directional distribution functions show quantitative
agreement.
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